R tools for spatial point pattern analysis applied to fluorescence localization nanoscopy

J. Godeta,b, H. Antona and Y. Mélyb

aLaboratoire de Biophotonique et Pharmacologie
Université de Strasbourg, UMR CNRS 7213
Faculté de Pharmacie, 74 rte du Rhin, Illkirch, France
julien.godet@unistra.fr

bDépartement d’Information Médicale et de Biostatistiques
Hôpitaux Universitaires de Strasbourg
1, pl de l’Hôpital, Strasbourg, France

Mots clefs: Nanoscopy, Spatial Statistics, R.

Emerging super-resolution optical microscopy techniques (usually referred as nanoscopy) capable of operating beyond the diffraction limit give now access to cell images with unprecedented levels of details [1-3]. These breakthrough technologies are particularly suitable to study the localization of fluorescent nano-objects within the cell environment [4]. Localization nanoscopy can image biological samples with high molecular densities while maintaining the localization accuracy of single nano-particles. But if localization nanoscopy can be routinely performed on conventional fluorescence microscopes, the challenge is now to offer data analysis facilities allowing a straightforward translation from single molecules detection to biological insights.

Here we propose few application examples using the point pattern analysis tools developed in R [5] to highlight their ability to extract valuable and biologically relevant information on nanoparticles distribution in the intracellular organelles. Taken together, coupling latest imaging techniques and R data-analysis facilities holds the promise to go one step further in the understanding of biological structures and dynamics.

References