# HTSFilter: Data-based filtering for replicated high-throughput sequencing experiments

Andrea Rau, Mélina Gallopin, Gilles Celeux, and Florence Jaffrézic

Deuxièmes rencontres R @ Lyon June 28, 2013





# RNA sequencing (RNA-seq)

 RNA-seq = Application of high-throughput sequencing (HTS) technology to the study of gene expression

#### Analysis of RNA-seq data

- Short reads pre-processed and mapped onto a genome reference sequence or assembled
- ② Expression level estimated for each biological entity (e.g., a gene)
  ⇒ Here we focus on count-based measures of gene expression (number of sequenced reads mapped to a gene)



Oata normalization and statistical analysis

## Differential gene expression analysis

### Differential expression (DE)

Observed change in expression between two experimental conditions is statistically significant, i.e., greater than expected just due to natural random variation.

 $\Rightarrow$  Statistical tools required to make such a decision (count data, highly heterogeneous, over-dispersion, ...)

Several approaches have been proposed using over-dispersed Poisson or negative binomial models

 Bioconductor packages DESeq, DESeq2, edgeR, limma (with voom function), DSS, ...



## Filtering in differential expression analysis

Differential analyses performed gene-by-gene, requiring a correction for multiple testing (e.g., FDR control):

- Stringent correction due to large number of hypothesis tests
- Usually assume p-values are uniformly distributed under H<sub>0</sub>



#### Filtering for RNA-seq data

- Identify and remove genes that generate an uninformative signal
- Only test hypotheses for genes passing filter ⇒ tempered correction for multiple testing
- Up to now, little discussion about appropriate filter & threshold

## Defining a data-based filter for HTS data

Let  $y_i$  be the full vector of normalized read counts in a given sample  $j \in \{1, \dots, J\}$ , where  $\mathcal{C}(j)$  is the experimental condition of sample j.

#### Idea:

Find the threshold s that maximizes the filtering similarity among replicates in the same condition (C(j) = C(j')) using the Jaccard index:

$$J_s(\mathbf{y}_j, \mathbf{y}_{j'}) = \frac{a}{a+b+c}$$
 Samp

Sample i'

Normalized counts > sNormalized counts < s

| Normalized | Normalized      |  |
|------------|-----------------|--|
| counts > s | $counts \leq s$ |  |
| а          | b               |  |

Sample i

## Data-based filtering threshold for HTS data

 Multiple replicates/conditions typically available ⇒ define a global filtering similarity by summing the pairwise Jaccard indices within each condition:

$$J_s^{\star}(\mathbf{y}) = \sum_{\substack{j < j' \ \mathcal{C}(j) = \mathcal{C}(j')}} J_s(\mathbf{y}_j, \mathbf{y}_{j'})$$



• Data-based filter threshold  $s^* = \operatorname{argmax}_s J_s^*(\mathbf{y})$ 

#### Proposed data-based Jaccard filter

Filter genes with normalized read counts  $\leq s^*$  in all samples



## HTSFilter package: Primary command

```
## S4 method
HTSFilter(x, conds,
    s.min=1, s.max=200, s.len=100, loess.span=0.3,
    normalization=c("TMM", "DESeq", "none"),
    plot=TRUE, plot.name=NA)
```

## Implementation of HTSFilter in the DESeq pipeline

```
> library(DESeq)
> library(HTSFilter)
> data("sultan")
> conds <- pData(sultan)$cell.line</pre>
>
> ## DESeq commands
> cds <- newCountDataSet(exprs(sultan), conds)</pre>
> cds <- estimateSizeFactors(cds)</pre>
> cds <- estimateDispersions(cds)</pre>
>
> ## HTSFilter
> cds <- HTSFilter(cds)$filteredData</pre>
>
> ## Calculate p-values
> res <- nbinomTest(cds, levels(conds)[1], levels(conds)[2])
```

## Implementation of HTSFilter in the edgeR pipeline

```
> library(edgeR)
> library(HTSFilter)
> data("sultan")
> conds <- pData(sultan)$cell.line</pre>
>
> ## edgeR commands
> dge <- DGEList(counts=exprs(sultan), group=conds)</pre>
> dge <- calcNormFactors(dge)</pre>
> dge <- estimateCommonDisp(dge)</pre>
> dge <- estimateTagwiseDisp(dge)</pre>
> et <- exactTest(dge)
>
> ## HTSFilter
> et <- HTSFilter(et, DGEList=dge)$filteredData
> topTags(et)
```

## Comparisons of filters made on real and simulated data

Supplementary Table 1: Characteristics for the Bottomly, Sultan, and Strub data, including the organism studied, the experimental conditions under comparison, sequencing machine used, relevant publication, number of replicates per condition, number of non-zero genes (i.e., genes with a non-zero count in at least one sample), sequencing depth (i.e., total number of uniquely mapped reads), minimum and maximum library sizes, and minimum intra-condition correlation

| and minimum intra-condition correlation. |                             |                                  |                                             |
|------------------------------------------|-----------------------------|----------------------------------|---------------------------------------------|
|                                          | Bottomly                    | Sultan                           | Strub                                       |
| Organism                                 | Mouse                       | Human                            | Human                                       |
| Comparison                               | C57BL/6J vs. DBA/2J strains | Embryonic kidney vs. B cell line | MiTF melanoma vs. repressed miTF cell lines |
| Sequencing machine                       | Illumina GA IIx             | 1G Illumina Genome Analyzer      | Illumina GA IIx                             |
| Publication                              | Bottomly et al. (2011)      | Sultan et al. (2008)             | Strub et al. (2011)                         |
| Reps per condition                       | {10, 11}                    | {2,2}                            | {3,3}                                       |
| Non-zero genes                           | 13,932                      | 9,010                            | 27,485                                      |
| Sequencing depth                         | 102,987,446                 | 1,793,562                        | 147,294,269                                 |
| Min library size                         | $2.7 \times 10^{6}$         | $3.9 \times 10^{5}$              | $2.0 \times 10^{7}$                         |
| Max library size                         | $7.3 \times 10^{6}$         | $5.1 \times 10^{5}$              | $2.8 \times 10^{7}$                         |
| Min intra-condition correlation          | 0.82                        | 0.99                             | 0.98                                        |

- Variety of real data (human, mouse) with different characteristics
- Simulations using negative binomial models and parameters fixed based on real datasets
- Alternative filters for comparisons: unfiltered, mean- and maximum-based (normalized read counts, RPKM, CPM), with thresholds chosen using 15% quantile

## Selected results from filter comparisons

- Jaccard filter leads to more discoveries (increased detection power!) at all but very weak levels of expression
- Note: about half of discoveries with mean expression < 10 in unfiltered data had 0 read counts in one of the conditions



(Results for Sultan data)

• Simulations: max-based filters more effective than mean-based filters, and the data-based HTSFilter threshold is a reasonable choice

#### Discussion

Filtering is of great practical importance for differential analysis of microarray and RNA-seq data:

- Identify and remove genes with uninformative signal prior to testing
- Until now, no clear recommendations about choice of filtering technique for RNA-seq data
- HTSFilter: a data-driven and non pre-fixed filtering threshold for replicated HTS data that was found to perform well in comparison with several other commonly used ad hoc filters

## Discussion: A word on data-driven threshold values...



Filtering threshold is specific to each dataset (tissue, organism, sequencing depth, intra-condition variability ...)

#### R package HTSFilter:

- Release version available on Bioconductor
   (http://www.bioconductor.org/packages/2.12/bioc/html/HTSFilter.html)
   and development version available on R-Forge
   (http://r-forge.r-project.org/projects/htsfilter)
- Compatible with a variety of data classes and analysis pipelines: matrix and data.frame objects, the S4 class CountDataSet (DESeq), and the S3 class DGEList (edgeR), ...

Rau, Gallopin, Celeux, Jaffrézic (2013). Data-based filtering for replicated high-throughput sequencing experiments. *Bioinformatics* (to appear).

## Thank you!