Motivation
The Dataset software
A short demonstration
Conclusion
Future work

The Dataset Project: Handling survey data in R

Emmanuel Rousseaux and Gilbert Ritschard

NCCR LIVES - IP 14

Institute for Demographic and Life Course Studies
University of Geneva
1211 Geneva 4, Switzerland
emmanuel.rousseaux@unige.ch

- Population studies strongly rely on survey data
- Survey data management has specific needs
- Currently R does not offer a robust framework to handlee survey data
- Much time is needed to manage and prepare data especially: create partner/sibling/parent files, deal with doublons
- Especially for panel survey data and network survey data
- ⇒ Need for a specific software framework in F

- ► Population studies strongly rely on survey data
- Survey data management has specific needs
- Currently R does not offer a robust framework to handle survey data
- ► Much time is needed to manage and prepare data especially: create partner/sibling/parent files, deal with doublons
- ► Especially for panel survey data and network survey data
- ⇒ Need for a specific software framework in F

- Population studies strongly rely on survey data
- ► Survey data management has specific needs
- Currently R does not offer a robust framework to handle survey data
- ► Much time is needed to manage and prepare data especially: create partner/sibling/parent files, deal with doublons
- Especially for panel survey data and network survey data
- ⇒ Need for a specific software framework in F

- Population studies strongly rely on survey data
- Survey data management has specific needs
- Currently R does not offer a robust framework to handle survey data
- ► Much time is needed to manage and prepare data especially: create partner/sibling/parent files, deal with doublons
- Especially for panel survey data and network survey data
- ⇒ Need for a specific software framework in F

- Population studies strongly rely on survey data
- ► Survey data management has specific needs
- Currently R does not offer a robust framework to handle survey data
- ► Much time is needed to manage and prepare data especially: create partner/sibling/parent files, deal with doublons
- Especially for panel survey data and network survey data
- ⇒ Need for a specific software framework in F

- Population studies strongly rely on survey data
- ► Survey data management has specific needs
- Currently R does not offer a robust framework to handle survey data
- ► Much time is needed to manage and prepare data especially: create partner/sibling/parent files, deal with doublons
- Especially for panel survey data and network survey data
- ⇒ Need for a specific software framework in F

- Population studies strongly rely on survey data
- ► Survey data management has specific needs
- Currently R does not offer a robust framework to handle survey data
- ► Much time is needed to manage and prepare data especially: create partner/sibling/parent files, deal with doublons
- Especially for panel survey data and network survey data
- ⇒ Need for a specific software framework in F

- Population studies strongly rely on survey data
- Survey data management has specific needs
- Currently R does not offer a robust framework to handle survey data
- ► Much time is needed to manage and prepare data especially: create partner/sibling/parent files, deal with doublons
- ► Especially for panel survey data and network survey data
- ⇒ Need for a specific software framework in R

- Storing, documenting and sharing complex survey data in R (cross-sectional data, panel data, network data)
- ▶ Merging data and metadata describing the survey
- ▶ Helping at efficiently and securely prepare data for a study
- Helping at quickly focus on results when running into analysis
- ► Facilitating reproducible research

- ► Storing, documenting and sharing complex survey data in R (cross-sectional data, panel data, network data)
- ► Merging data and metadata describing the survey
- ▶ Helping at efficiently and securely prepare data for a study
- Helping at quickly focus on results when running into analysis
- ► Facilitating reproducible research

- ► Storing, documenting and sharing complex survey data in R (cross-sectional data, panel data, network data)
- ► Merging data and metadata describing the survey
- ▶ Helping at efficiently and securely prepare data for a study
- Helping at quickly focus on results when running into analysis
- ► Facilitating reproducible research

- ► Storing, documenting and sharing complex survey data in R (cross-sectional data, panel data, network data)
- ► Merging data and metadata describing the survey
- ► Helping at efficiently and securely prepare data for a study
- Helping at quickly focus on results when running into analysis
- ► Facilitating reproducible research

- ► Storing, documenting and sharing complex survey data in R (cross-sectional data, panel data, network data)
- ► Merging data and metadata describing the survey
- ► Helping at efficiently and securely prepare data for a study
- ► Helping at quickly focus on results when running into analysis
- ► Facilitating reproducible research

- ► Storing, documenting and sharing complex survey data in R (cross-sectional data, panel data, network data)
- ► Merging data and metadata describing the survey
- ▶ Helping at efficiently and securely prepare data for a study
- ► Helping at quickly focus on results when running into analysis
- ► Facilitating reproducible research

- Allows to store metadata about the survey conducted
- Accepts user-defined missing values
- Natively accounts for weights
- Generates codebooks directly in PDF format
- Automatic data consistency checks
- ➤ Automatic "loss of representativeness" check:

- ► Allows to store metadata about the survey conducted
- Accepts user-defined missing values
- Natively accounts for weights
- Generates codebooks directly in PDF format
- Automatic data consistency checks
- ► Automatic "loss of representativeness" checks

- ► Allows to store metadata about the survey conducted
- Accepts user-defined missing values
- Natively accounts for weights
- ► Generates codebooks directly in PDF format
- Automatic data consistency checks
- ► Automatic "loss of representativeness" checks

- ► Allows to store metadata about the survey conducted
- Accepts user-defined missing values
- ► Natively accounts for weights
- ► Generates codebooks directly in PDF format
- Automatic data consistency checks
- ► Automatic "loss of representativeness" checks

- ► Allows to store metadata about the survey conducted
- Accepts user-defined missing values
- Natively accounts for weights
- Generates codebooks directly in PDF format
- ► Automatic data consistency checks
- ► Automatic "loss of representativeness" checks

- ► Allows to store metadata about the survey conducted
- Accepts user-defined missing values
- Natively accounts for weights
- Generates codebooks directly in PDF format
- ► Automatic data consistency checks
- ► Automatic "loss of representativeness" checks

- ► Allows to store metadata about the survey conducted
- Accepts user-defined missing values
- Natively accounts for weights
- Generates codebooks directly in PDF format
- ► Automatic data consistency checks
- ► Automatic "loss of representativeness" checks

- Search for specific variables across the whole database
- Specify the measure (scale, nominal, ordinal, . . .)
- Turn a missing value to valid case and vice-versa
- Easy to use/remember recoding methods
- Detailed frequency tables

- ► Search for specific variables across the whole database
- ► Specify the measure (scale, nominal, ordinal, . . .)
- ► Turn a missing value to valid case and vice-versa
- Easy to use/remember recoding methods
- Detailed frequency tables

- ► Search for specific variables across the whole database
- ► Specify the measure (scale, nominal, ordinal, ...)
- ► Turn a missing value to valid case and vice-versa
- Easy to use/remember recoding methods
- Detailed frequency tables

- ► Search for specific variables across the whole database
- ► Specify the measure (scale, nominal, ordinal, ...)
- ► Turn a missing value to valid case and vice-versa
- ► Easy to use/remember recoding methods
- ▶ Detailed frequency tables

- ► Search for specific variables across the whole database
- Specify the measure (scale, nominal, ordinal, . . .)
- ► Turn a missing value to valid case and vice-versa
- Easy to use/remember recoding methods
- Detailed frequency tables

- ► Search for specific variables across the whole database
- Specify the measure (scale, nominal, ordinal, . . .)
- ▶ Turn a missing value to valid case and vice-versa
- Easy to use/remember recoding methods
- ► Detailed frequency tables

- Programming syntax oriented for scientists in social sciences
- Automatically verify validity of models computed
- Format outputs to quickly focus on interpretation, in an approximation of the PDF file
- Print in this file all settings used
- Export outputs for reuse in other softwares

- Programming syntax oriented for scientists in social sciences
- Automatically verify validity of models computed
- Format outputs to quickly focus on interpretation, in a PDF file
- Print in this file all settings used
- ► Export outputs for reuse in other softwares

- Programming syntax oriented for scientists in social sciences
- ► Automatically verify validity of models computed
- Format outputs to quickly focus on interpretation, in a PDF file
- Print in this file all settings used
- ► Export outputs for reuse in other softwares

- Programming syntax oriented for scientists in social sciences
- ► Automatically verify validity of models computed
- ► Format outputs to quickly focus on interpretation, in a PDF file
- Print in this file all settings used
- ► Export outputs for reuse in other softwares

- Programming syntax oriented for scientists in social sciences
- Automatically verify validity of models computed
- ► Format outputs to quickly focus on interpretation, in a PDF file
- ▶ Print in this file all settings used
- Export outputs for reuse in other softwares

- Programming syntax oriented for scientists in social sciences
- ► Automatically verify validity of models computed
- ► Format outputs to quickly focus on interpretation, in a PDF file
- Print in this file all settings used
- ► Export outputs for reuse in other softwares

Tools for panel data

- Automatically check for missings values/valids casess across years
- ► Extract a whole trajectory in one step
- Switch missing/valid values across years in one step
- ▶ Perform recoding operation across years in one step
- ► Export to sequence objects ready to be analysed with the TraMineR toolbox (Gabadinho et al., 2011)

Tools for panel data

- Automatically check for missings values/valids cases across years
- Extract a whole trajectory in one step
- ► Switch missing/valid values across years in one step
- ▶ Perform recoding operation across years in one step
- ► Export to sequence objects ready to be analysed with the TraMineR toolbox (Gabadinho et al., 2011)

- Automatically check for missings values/valids cases across years
- Extract a whole trajectory in one step
- Switch missing/valid values across years in one step
- ▶ Perform recoding operation across years in one step
- ► Export to sequence objects ready to be analysed with the TraMineR toolbox (Gabadinho et al., 2011)

- Automatically check for missings values/valids cases across years
- Extract a whole trajectory in one step
- ► Switch missing/valid values across years in one step
- ▶ Perform recoding operation across years in one step
- ► Export to sequence objects ready to be analysed with the TraMineR toolbox (Gabadinho et al., 2011)

- Automatically check for missings values/valids cases across years
- Extract a whole trajectory in one step
- ► Switch missing/valid values across years in one step
- ► Perform recoding operation across years in one step
- ► Export to sequence objects ready to be analysed with the TraMineR toolbox (Gabadinho et al., 2011)

- Automatically check for missings values/valids cases across years
- Extract a whole trajectory in one step
- ► Switch missing/valid values across years in one step
- ► Perform recoding operation across years in one step
- ► Export to sequence objects ready to be analysed with the TraMineR toolbox (Gabadinho et al., 2011)

A short demonstration

Importing an SPSS file

Here we use data from the Swiss Household Panel (Voorpostel et al., 2012)

```
shp.all <- get.spss.file(
  file = "SHP_MP.sav",
  datadir = datadir.all,
  name = "SHP all MP",
  description = "Swiss Household Panel, release October 2012, Master
    personal database"
)</pre>
```


Importing an SPSS file

Getting a codebook of the database
Preparing data for analysis
Running into analysis

Getting a codebook of the database

exportPDF(shp.all)

Getting a codebook of the database

Summary of the SHP all MP dataset

Generated by the R Dataset package version 0.2.41

I anuary 25, 2013

Overview

- Name: SHP all MP
- Description: Swiss Household Panel, release October 2013, Master
- personal database
- . Number of variables: 72 (1 binaries, 0 ordinals, 40 nominals, 31 scales, 0 timestamos, 0 weightings)
- Number of individuals: 22976 (for 22976 rows)
- Percent of missing values: 60.65 %
- · Weighting variable: none.
- Control variable(s): none.
- Spatial variable: none

- Author(s):
- Contact e-mail:
- License · R elease date:
- · Citation:
- Website Population:
- Figure: Example of codebook generation, page 1.

Variable summary

Binary variables

_	Variable	Description		N	NA (%)	Distribution (%)
7	sex	Sex		22976	0	woman (50.71), man (49.29)
_			Table 1: Binary variables summary			

rable 1. billary variables summary

Nominal variables

	Variable	Description	N	NA (%)	Class	es Distribution (%)
1	filter11	Identification of the survey	22976	0	4	SHP I (sample 1999) (67.73), SHP II (sample 2004) (32.27),
9	status99	Type of interviews completed: grid, proxy, personal	12931	43.7	3	individual questionnaire (33.94), proxy questionnaire (11.48), grid only (10.85)
10	rnp99	Reason for not responding to ind. Questionnaire	12885	43.9	13	Interviewed (33.94), PROXY (11.48), Person cannot be reached (2.16), Refusal: not interested (1.93), Refusal: no time (1.83), Refusal: opposed to surveys as a matter-(1.24), No time immediately, appointment made (0.89) Age or health related problems (0.73), Refusal: other motives (0.71), Language problem (doesn't speak neither- (0.54),
11	rxa99	Reason for proxy	85	99.6	12	
14	status00	Type of interviews completed: grid, proxy, personal	11678	49.2	3	individual questionnaire (30.78), proxy questionnaire (10.36), grid only (9.68
15	rnp00	Reason for not responding to ind. Questionnaire	11548	49.7	13	Interviewed (30.78), PROXY (10.36), Refusal: not interested (2.52), Perso cannot be reached (1.51), Refusal: opposed to surveys as a matter- (1.43, Refusal: no time (0.86), Refusal: other motives (0.80), Age or health relate problems (0.61), Language problem (doesn't speak neither- (0.51),
16	rxa00	Reason for proxy	119	99.5	12	
19	status01	Type of interviews completed: grid, proxy, personal	11116	51.6	3	individual questionnaire (28.73), grid only (10.19), proxy questionnaire (9.46
20	rnp01	Reason for not responding to ind. Questionnaire	10326	55.1	13	Interviewed (28.73), PROXY (9.46), Refusal: not interested (1.83), Perso cannot be reached (1.05), Refusal: no time (0.66), Refusal: other motive (0.61), Age or health related problems (0.61), Person is absent or phone isn answeri- (0.60), Refusal: opposed to surveys as a matter- (0.53),
21	rxa01	Reason for proxy	93	99.6	12	
24	status02	Type of interviews completed: grid, proxy, personal	9537	58.5	3	individual questionnaire (24.81), proxy questionnaire (8.64), grid only (8.06
25	rnp02	Reason for not responding to ind. Questionnaire	8936	61.1	13	Interviewed (24.81), PROXY (8.64), Refusal: not interested (1.19), No tim immediately, appointment made (0.82), Refusal: other motives (0.71), Refusal: no time (0.62), Person cannot be reached (0.57),
26	rxa02	Reason for proxy	163	99.3	12	

Figure: Example of codebook generation, page 4.

Preparing data for analysis

We load Personnal database of the 2011 wave

```
shp.w2011p <- get.spss.file(
  file = "SHP11_P_USER.sav",
  datadir = datadir.w2011,
  name = "SHP wave 2011 personal",
  description = "Swiss Household Panel, release October 2012,
    wave 2011, personal database"
)</pre>
```

Then we merge both databases

```
shp <- merge(shp.all, shp.w2011p, by = "idpers")</pre>
```


First we correctly weight data

How many variables in our database?

```
nvariable(shp)
## NULL
## [1] 531
```

But we can easily retrieve them

```
weights.var <- contains("weight", shp)</pre>
##
                                                                                     Description
## p11c46
                                                                                   Weight in kg
## wp11t1p
                    PSMI-PSMII transversal individual weight inflating to size of CH-population
## wp11t1s
                                   PSMI-PSMII transversal individual weight keeping sample size
## wp11lp1p
                 PSMI longitudinal individual weight inflating to size of CH-population in 1999
## wp11lp1s
                                        PSMI longitudinal individual weight keeping sample size
## wp11l1p PSMI-PSMII longitudinal individual weight inflating to size of CH-population in 2004
## wp11l1s
                                  PSMI-PSMII longitudinal individual weight keeping sample size
```


We use the variable wp11t1s

We check the variable is valid for weighting data

```
shp$wp11t1s <- wvar(shp$wp11t1s)</pre>
```

Then we set weights in the database

```
weighting(shp) <- "wp11t1s"</pre>
```

And compare the number of individuals to the number of rows

```
nrow(shp)
## [1] 11178

nindividual(shp)
## [1] 7459
```

Retrieving variables of interest: health

```
health.var <- contains("health", shp)
##
                                                          Description
## p11c01
                                                        Health status
## p11c02
                                      Satisfaction with health status
## p11c03
                                Improvement in health: Last 12 months
## p11c04a
                        Health problems: Back problems: Last 4 weeks
## p11c05a
                   Health problems: Weakness, weariness: Last 4 weeks
## p11c06a
                    Health problems: Sleeping problems: Last 4 weeks
## p11c07a
                            Health problems: Headaches: Last 4 weeks
## p11c08
                  Health impediment in everyday activities: Extension
## p11c19a
                          Chronic illness or long-term health problem
## p11c11 Number of days affected by health problems: Last 12 months
## p11p54
                                              Public expenses: Health
## x11c05
                                          Assessment of health status
## x11c06
                                       Suffering from health problems
## x11c07
                                             Cause of health problems
## x11c09
                        Days of suffering from health problems: Days
```


Retrieving variables of interest: association membership

```
association.var <- contains("association", shp)
                                                              Description
##
## p11n40
                              Associational membership: Sports or leisure
## p11n41
                                        Associational membership: Culture
## p11n42
                                      Associational membership: Syndicate
## p11n43
                                Associational membership: Political Party
## p11n44
                  Associational membership: Protection of the environment
## p11n45
                        Associational membership: Charitable organisation
## p11n50
                Associational membership: Religious organisation or group
## p11n51 Associational membership: Local, parents' or women's association
## p11n52
                          Associational membership: Other interest groups
```


Retrieving variables of interest: working status

```
work.var <- contains(c("work", "status"), shp, and = TRUE)
## Description
## wstat11 Working status</pre>
```


Then we extract our study sample

```
study.variables <- c(
   "wp11t1s",
   "p1tc01",
   "age11",
   "sex11",
   "canton11",
   "p1in40",
   "wstat11"
)</pre>
```

```
study <- shp[, study.variables]
```


Quick overview of the variables in our database

```
alldescriptions(study)

## p11t1s PSMI-PSMII transversal individual weight keeping sample size
## sex11 Sex
## age11 Age in year of interview
## p11c01 Health status
## wtax11 Working status
## p11h40 Associational membership: Sports or leisure
```


We can rename variables to be more clear

```
study <- rename(study,
"wp11t1s" = "weights",
"p11c01" = "health",
"age11" = "age",
"sex11" = "sex",
"canton11" = "canton",
"p11n40" = "association",
"wstat11" = "work.stat"
)</pre>
```

```
alldescriptions(study)

## weights PSMI-PSMII transversal individual weight keeping sample size
## sex Sex

## age Age in year of interview
## health Health status
## work.stat Working status
## association Associational membership: Sports or leisure
```

With the same function we also can rename values

```
study$health <- rename(study$health,
   "so, so (average)" = "so, so",
   "not well at all" = "poor"
)</pre>
```

```
valids(study$health)
## very well well so, so not very well poor
## 1 2 3 4 5
```


Subsampling population: lost of representativness check

We define variables on which we want to perform checks

```
checkvars(study) <- c("sex", "work.stat")</pre>
```

And we subsample our study database

```
shp.association <- subset(study, association == "Active member")

## => control on sex: warning, p-value < 0.05

## man are overrepresented

## woman are underrepresented

## => control on work.stat: warning, p-value < 0.05

## active occupied are overrepresented

## unemployed, not in labor force are underrepresented
```


Computing frequencies: for categorical variables

```
frequencies("health", study)
##
      Coding Missing
                             Label
                                      N N total Percent Percent (all) Percent total
## 1
                         very well 1428
                                                  19.16
                                                                 19.15
## 2
                              well 4811
                                                   64.52
                                                                 64.50
## 3
                            so. so 1037
                                                  13.92
                                                                 13.91
## 4
                     not very well
                                   157
                                                   2.11
                                                                 2.11
## 5
                                           7456
                                                   0.29
                                                                 0.29
                                                                               99.97
                              poor
                                     21
## 7
                         no answer
                                                  100.00
                                                                 0.03
## 6
                   x does not know
                                                    0.00
                                                                 0.00
## 8
          - 3
                     inapplicable
                                                    0.00
                                                                 0.00
## 9
          - 7
                   x filter error
                                                    0.00
                                                                  0.00
## 10
          - 8
                       other error
                                                    0.00
                                                                  0.00
                                                                                0.03
## 11
                                           7459
                                                                                 100
```


Computing frequencies: for scale variables

```
frequencies("age", study)
      Coding Missing
                            Label
                                       N N total Percent Percent (all) Percent total
##
## 1
                            [0.9.7]
                                       0
                                                     0.00
                                                                   0.00
## 2
                        (9.7.19.47
                                     592
                                                     7.95
                                                                   7.95
## 3
                       (19.4,29.1] 1066
                                                    14.30
                                                                   14.30
                        (29.1.38.8]
## 4
                                     990
                                                    13.27
                                                                  13.27
## 5
                        (38.8.48.5] 1477
                                                    19.81
                                                                  19.81
## 6
                       (48.5,58.2] 1245
                                                    16.70
                                                                  16.70
## 7
                       (58.2,67.9]
                                     926
                                                    12.42
                                                                  12.42
                                                                   9 60
## 8
                       (67.9.77.6]
                                     716
                                                     9 60
## 9
                        (77.6,87.3]
                                     394
                                                     5.29
                                                                   5.29
## 10
          10
                          (87.3,97]
                                      48
                                             7459
                                                     0.65
                                                                   0.65
                                                                                100.00
## 11
          -1
                   x does not know
                                                     0.00
                                                                   0.00
## 12
          - 2
                                                     0.00
                                                                   0.00
                          no answer
## 13
          - 3
                      inapplicable
                                                     0.00
                                                                   0.00
## 14
          - 7
                      filter error
                                                     0.00
                                                                   0.00
## 15
          - 8
                       other error
                                                     0.00
                                                                   0.00
                                                                                  0.00
                                                0
## 16
                                             7459
                                                                                   100
```


Exporting frequency tables

Export in a PDF file or in a LATEX document/presentation

exportTEX(frequencies("health", study))

Coding	Missing	Label	N	N total	Percent	Percent (all)	Percent total
1		very well	1428		19.16	19.15	
2		well	4811		64.52	64.50	
3		so, so	1037		13.92	13.91	
4		not very well	157		2.11	2.11	
5		poor	21	7456	0.29	0.29	99.97
-2	×	no answer	2		100.00	0.03	
-1	×	does not know	0		0.00	0.00	
-3	×	inapplicable	0		0.00	0.00	
-7	×	filter error	0		0.00	0.00	
-8	×	other error	0	2	0.00	0.00	0.03
				7459			100

Recoding: categorical variables

Merging values

```
study$health.2 <- recode(
  study$health,
  "well" = 1:2,
  "poor" = 3:5
## number of missings: 3587 ( 32.09 %)
## Operation completed successfully.
## Here is the allocation of the rows in the different classes.
##
##
                well poor
## verv well
            1500
##
  well
                4926 0
##
    so, so 0 1015
##
    not very well 0 136
##
    poor
               0 14
```


Recoding: scale variables

Discretization

```
study$age.3 <- cut(
  study$age,
  breaks = c(30,65)
)</pre>
```

Coding	Missing	Label	N	N total	Percent	Percent (all)	Percent total
1		[0,30]	1775		23.80	23.80	
2		(30,65]	4325		57.99	57.99	
3		(65,97]	1358	7459	18.21	18.21	100.00
-1	×	does not know	0		0.00	0.00	
-2	×	no answer	0		0.00	0.00	
- 3	×	inapplicable	0		0.00	0.00	
-7	×	filter error	0		0.00	0.00	
-8	×	other error	0	0	0.00	0.00	0.00
				7459			100

Running into analysis: univariate

The package extends classical univariate descriptive statistic methods for taking weights into account.

Methods provided are: min, max, mode, mean, standard deviation and variance.

Running into analysis: bivariate

```
bivan(
health.2 ~ sex + age.3 + association + work.stat,
study
)
```

	chi2	cramer.v	gk.tau.sqrt	somer.d
sex	23.83 ***	0.06 ***	0.06 ***	0.04 ***
age.3	273.95 ***	0.19 ***	0.19 ***	0.13 ***
association	85.84 ***	0.11 ***	0.11 ***	0.08 ***
work.stat	232.88 ***	0.18 ***	0.18 ***	0.14 ***

Table: Bivariate analysis with the self-reported health as dependend variable. Legend: *** < 0.001, ** < 0.01, * < 0.05, + < 0.1

Running into analysis: logistic regression

```
reglog(
  formula = health.2 ~ sex + age.3,
  imbric = list(
    . ~ association,
    . ~ work.stat
),
  target = 'poor',
  reference = list(
    'association' = 'Not a member',
    'age.3' = '[0,30]'
),
  data = study
)
```


Running into analysis: logistic regression

	Model 1	Model 2	Model 3
sexwoman	1.321 ***	1.254 ***	1.145 *
age.3(30,65]	3 113 ***	2.994 ***	3.468 ***
age.3(65,97]	5.946 ***	5.635 ***	3.598 ***
association Active member		0.579 ***	0.595 ***
associationPassive member		0.618 ***	0.619 ***
work.statunemployed			2.460 ***
work statnot in labor force			2.393 ***
(Intercept)	0.056 ***	0.071 ***	0.054 ***

Table: Estimated coefficients (odds ratios) , *** < 0.001, ** < 0.01, * < 0.05, + < 0.1, " = NA

Running into analysis: logistic regression

	Model 1	Model 2	Model 3
Deviance	6317.61	6259.56	6147.26
Deviance H0	6626.53	6626.53	6626.53
Model Chi2	308.92 ***	366.97 ***	479.27 ***
Model DF	3.00	5.00	7.00
Block Chi2	308.92 ***	58.05 ***	112.30 ***
Block DF	3.00	2.00	2.00
R2 Cox-Snell	0.04	0.05	0.06
R2 Nagelkerke	0.07	0.08	0.11
N parameters	4.00	6.00	8.00
AIC	6520.87	6468.36	6354.56
BIC	7223.78	7190.42	7071.45
N	7454.00	7454.00	7454.00

Table: Quality measures, *** < 0.001, ** < 0.01, * < 0.05, + < 0.1, " = NA

Conclusion

- ► The toolbox provides an efficient and secure framework for handling complex survey data
- ► Encouraging feedback from users
- ► Longitudinal and network versions forthcoming

Conclusion

- ► The toolbox provides an efficient and secure framework for handling complex survey data
- ► Encouraging feedback from users
- ► Longitudinal and network versions forthcoming

Conclusion

- ► The toolbox provides an efficient and secure framework for handling complex survey data
- ► Encouraging feedback from users
- ► Longitudinal and network versions forthcoming

Future work

- ► Facilitate export of data and analysis outputs in csv/tsv
- ► Add front-ends for other popular methods, especially:
 - Survival analysis
 - Structural equation modeling

Future work

- ► Facilitate export of data and analysis outputs in csv/tsv
- ► Add front-ends for other popular methods, especially:
 - ► Survival analysis
 - ► Structural equation modeling

Future work

- ► Facilitate export of data and analysis outputs in csv/tsv
- ► Add front-ends for other popular methods, especially:
 - ► Survival analysis
 - ► Structural equation modeling

Future work

- ► Facilitate export of data and analysis outputs in csv/tsv
- ► Add front-ends for other popular methods, especially:
 - ► Survival analysis
 - ► Structural equation modeling

Future work

- ► Facilitate export of data and analysis outputs in csv/tsv
- ► Add front-ends for other popular methods, especially:
 - Survival analysis
 - ► Structural equation modeling

Future work

- ► Facilitate export of data and analysis outputs in csv/tsv
- ► Add front-ends for other popular methods, especially:
 - Survival analysis
 - ► Structural equation modeling

Selected bibliography I

[De Vries] De Vries, A. (2012) surveydata: Tools to manipulate survey data. R package version 0.1-11

[Elff] Elff, M. (2013) memisc: Tools for Management of Survey Data, Graphics, Programming, Statistics and Simulation. R package version 0.95-39.

[Gabadinho et al.] Gabadinho, A., Ritschard, G., Müller, N.S. & Studer, M. (2011) Analyzing and visualizing state sequences in R with TraMineR Journal of Statistical Software. Vol. 40(4), pp. 1-37.

[Rousseaux et al.] Rousseaux E. Ritschard G. (2013) he Dataset project: Handling survey data in R In 7th International Conference of Panel Data Users in Switzerland. February 15-16th, 2013, pp. 37-38.

[Voorpostel et al.] Voorpostel, M., Tillmann, R., Lebert, F., Kuhn, U., Lipps, O., Ryser, V.-A., Schmid, F., Rothenbuehler, M., Wernli, B. Swiss Household Panel Userguide

(1999-2011), Wave 13. Lausanne: FORS (October 2012).

Thank you for your attention

Any question?

