R2GUESS: a GPU-based R package for a Bayesian variable selection model accommodating multivariate responses

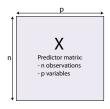
Habib Saadi ², Benoît Liquet ¹, Marc Chadeau-Hyam ², Leonardo Bottolo ², and Sylvia Richardson ¹

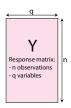
¹ MRC Biostatistics Unit, Cambridge

² Imperial College, London

Aims and constraint

Data definition:





Aim: identify which of the p variables in X are significantly associated with the outcome Y

- Very large variety of models: 2^p
- Multivariate outcomes: q > 1
- Special case: n < p

Model

Sparse Bayesian Multiple Regression (SBRM)

$$\mathbf{Y} - \mathbf{X}_{\gamma} \mathbf{B}_{\gamma} \sim \mathcal{N}\left(\mathbf{I}_{n}, \Sigma\right)$$

- lacksquare Σ is a $q \times q$ covariance matrix
- lacksquare lacksquare lacksquare lacksquare lacksquare a linear predictor based on $oldsymbol{X}_{\gamma}$
- **\mathbf{X}_{\gamma}**: original design matrix deprived of the columns that are not used to predict \mathbf{Y} .

$$\mathbf{X} = \begin{pmatrix} 1 & \dots & \dots & \dots & p & & 1 & \dots & p_{\gamma} \\ \times & \dots & \dots & \times & \dots & \dots & \times \\ \times & \dots & \dots & \times & \dots & \dots & \times \\ \vdots & \dots & \dots & \vdots & \dots & \dots & \vdots \\ \times & \dots & \dots & \times & \dots & \dots & \times \end{pmatrix} \Longrightarrow \mathbf{X}_{\gamma} = \begin{pmatrix} \times & \times & \times \\ \times & \times & \times \\ \vdots & \vdots & \vdots \\ \times & \times & \times \end{pmatrix}$$

lacksquare Sparsity is then induced by a latent binary variable γ

Model

Prior specification

lacksquare Sparsity prior on the model space: Beta binomial on γ

$$p(\gamma_i|\omega) \sim B(\omega) \;\; \omega \sim Beta(a_\omega,b_\omega)$$

■ Matrix of regression coefficients \boldsymbol{B}_{γ} :

$$\boldsymbol{B}_{\boldsymbol{\gamma}}|\boldsymbol{\gamma}, \boldsymbol{\Sigma} \sim \mathcal{N}\left(H_{\boldsymbol{\gamma}}, \boldsymbol{\Sigma}\right)$$

- $\Sigma \sim \mathcal{IW}(a_{\Sigma}, Q_{\Sigma})$, with $E(\Sigma) = Q_{\Sigma}/(a_{\Sigma}-2)$, $Q_{\Sigma} = sI_q$
- Matrix $H_{\gamma} = g\left(\boldsymbol{X}_{\gamma}^{T}\boldsymbol{X}_{\gamma}\right)^{-1}$ regulates the dependencies among the p predictors.
- The parameter g ("g-prior") influence the variable selection procedure (link to the model size, e.g. small g favors saturated models) ⇒ included in the MCMC scheme

$$g \sim InvGa(1/2, n/2)$$

Implementation of SBMR: Evolutionary Monte Carlo sampler

- Use an Evolutionary Stochastic Search (ESS) algorithms
 - \hookrightarrow make model search and implementation feasible and robust.
 - \hookrightarrow open source C⁺⁺ code (Bottolo et al. Bioinformatics, 2011)
- Key features of ESS⁺⁺
 - B_{γ} and Σ are integrated to obtain marginal likelihood
 - lacksquare Fully Bayesian inference for g and γ
 - Use evolutionary Monte Carlo (EMC), (Liang and Wong, 2000; Jasra et al., 2007)
 - \hookrightarrow combines MCMC and genetic algorithms using different chains with tempering.

Implementation of ESS⁺⁺

- The computation of the marginal likelihood requires repeated evaluation of $\mathbf{Y}^T \mathbf{X}_{\gamma} \left(\mathbf{X}_{\gamma}^T \mathbf{X}_{\gamma} \right)^{-1} \mathbf{X}_{\gamma}^T \mathbf{Y}$
- To overcome this, we use CUDA which enables to use the multiprocessor power of the GPU (graphics processing unit).
 ⇒ C⁺⁺ software GU-ESS based on previous ESS⁺⁺ algorithm.
- Specifically we use the CULA library, allowing linear algebra computations to be performed on the GPU.
- We can do roughly 1 million model evaluations in 10 hours (in 3 chains for example).
- Open source code available in http://www.bgx.org.uk/software/guess.html

GUESS usage: parameters

Input: Most of the parameters are automatically set up and only the following values are required to run GUESS:

- $E(p_{\gamma})$ and $\sigma_{p_{\gamma}}$: The mean and s.d. for the # of underlying factors.
- L: the number of chains
- The number of iterations & burn-in
- The specific parameters for each move:
 - \hookrightarrow These are more complex but some standard values are available

GUESS usage: Ouput

Output: ESS provides a large variety of outputs to monitor the moves and their acceptance probability, but more importantly:

- Main outputs:
 - The history of all visited models and their conditional posterior
 - The posterior distribution of *g*
- From these output, the following are computed:
 - The posterior of all model visited (and their rank)
 - The posterior model size
 - The posterior shrinkage factor (g)
 - The marginal posterior probability of inclusion (MPPI)
 - Jeffrey's scale: log₁₀(BF) (BF=Bayes Factors)
 - And many more $(R^2...)$

R2GUESS: GPU-based R package

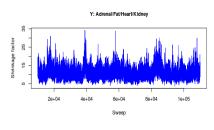
R2GUESS provide an easy way to

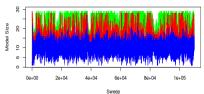
- run the C⁺⁺ program GUESS
 - \hookrightarrow R2GUESS(), R2GUESS.permut()
 - \hookrightarrow define an object of class ESS
- investigate the convergence of the algorithm
 - \hookrightarrow plot(), check.convergence()
- analyse the results
 - \hookrightarrow as.ESS.object() \longrightarrow define an ESS object
 - $\hookrightarrow \texttt{print()}, \, \texttt{summary()} \, \longrightarrow \texttt{resume} \, \, \texttt{of} \, \, \texttt{the} \, \, \texttt{best models}$
- interpret the results
 - \hookrightarrow plot.MPPI(): plot the marginal posterior probability of inclusion of each predictor $P(\gamma_j=1|Y)$
 - plot.model(), plot.variable(), plot.cim(), ...

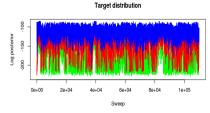
Illustration: Genetic regulation of expression

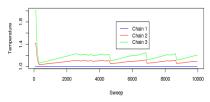
- Analyse two genes (Cd36 and Hopx) presented in Petretto et al. (2010)
- gene expression treated as quantitative phenotype (Y)
- \blacksquare genotype data (SNPs) are used as predictors (X)
- Investigate the ability of ESS++ to find a parsimonious set of predictors that explain the joint variability of gene expression in q = 4 tissues (adrenal, fat, heart, kidney) using 770 SNPs (X) and n = 29 observations taken from the rat inbred lines.

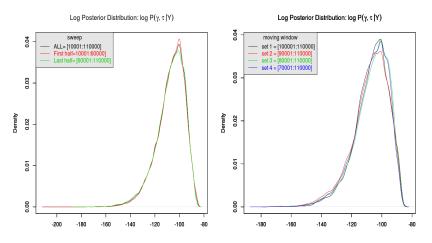
Monitoring ESS: plot()











How to select the best predictors?

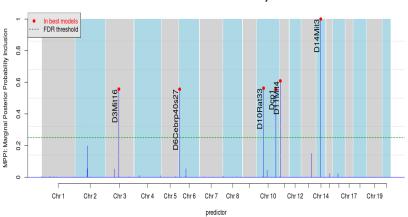
- Marginal Posterior Probability of Inclusion (MPPI) for each SNP $\hookrightarrow P(\gamma_j = 1|Y)$ measure the marginal contribution of each predictor
- Define threshold for MPPI with respect to a specified FDR level.
 For a threshod c
 - (i) Define R the number of declared association (MPPI< c)
 - (ii) For each j (1, ..., N) artificial data set (permutation of the phenotype) compute the number S_j of falsely declared associations.
 - (iii) Choose the threshod c such as the ratio $\frac{1}{N} \sum_{j=1}^{N} \frac{S_j}{R}$ is not greater than a FDR level (0.05)
- Use the function FDR.permutation.parrallel() which performs this computation by running GUESS on each permutation in a parallel way (argument nbcpu) using the R package snowfall

How to select the best models?

- Assessing model importance by the posterior model probability of each unique model (s): $P(\gamma^{(s)}|Y)$
- Compute the Jeffrey's Scale: $JF = log_{10}BF(\gamma^{(B)}; \gamma^{(0)})$ where $BF(\gamma^{(B)}; \gamma^{(0)}) = p(Y|\gamma^{(B)})/p(Y|\gamma^{(0)})$ represent the Bayes Factor comparing the best model $(\gamma^{(B)})$ with the null model $(\gamma^{(0)})$.
- Define threshold for Jeffrey's Scale to highlight best models by permutation method \hookrightarrow threshold is defined by the $1-\alpha$ quantile of the distribution of the JF's scale based on the artificial data set (permutation of the phenotype).
- Use the function FDR.permutation.parrallel()

Hopx gene: MPI (plot.MPI())

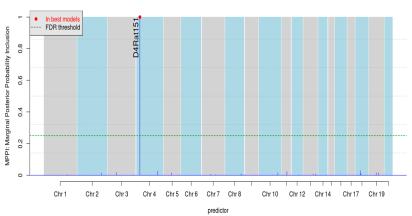
Y: Adrenal/Fat/Heart/Kidney



The 10 best models are polygenic.

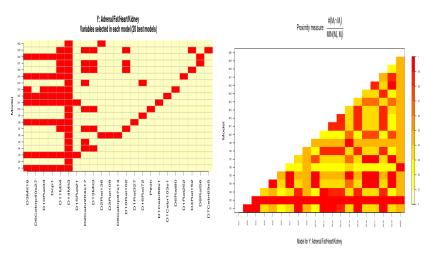
CD36 gene: MPI (plot.MPI())

Y: Adrenal/Fat/Heart/Kidney



Single effect on the variation of the gene expression in the 4 tissues.

Plot functions: plot.model(), plot.model()



Cluster image mapping: plot.cim()

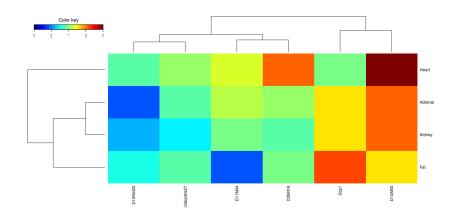
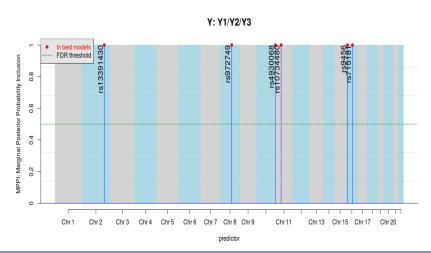


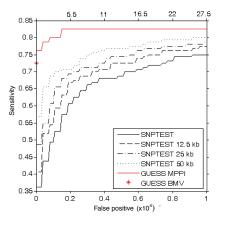
Illustration: Genome Wide Association Study

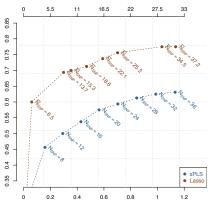
- Large data-set:
 - X: 273 675 SNPs;
 - n = 3122 subjects;
 - Y: 3 correlated phenotypes.
- Need to use GUESS instead of ESS
 - \hookrightarrow argument CUDA = 1 in R2GUESS()
- Simulation of the phenotypes:
 - based on 8 SNPs from the 273 675 SNPs
 - Highlights the specificity of GUESS
 - Comparison over alternative methods: (SNPTest, sPLS, Lasso)

Marginal probability of Inclusion: plot.MPPI()



Simulation results





Conclusion and perspectives

- On the R2GUESS package:
 - Easy way to run the C++ code
 - Functions and methods to analyse the runs
 - Propose an R GUI
 - Submit in CRAN
 - Article in progress presented a tutorial of R2GUESS
- On the model:
 - High specificity of our approach
 - Increased power of GUESS over alternative methods (SNPTest, sPLS, Lasso).
 - incorporate in the model a frailty term (random effect) to take into count repeated measure or grouped data
 - Implement the model for binary response or qualitative response

references

- Leonardo Bottolo and Sylvia Richardson. *Evolutionary stochastic search for bayesian model exploration*. Bayesian Analysis, 5(3):583-618, 2010.
- Leonardo Bottolo, Marc Chadeau-Hyam, David I. Hastie, Sarah R. Langley, Enrico Petretto, Laurence Tiret, David Tregouet, and Sylvia Richardson. *ESS++: a C++ objected-oriented algorithm for bayesian stochastic search model exploration.* Bioinformatics, 27(4):587-588, 2011.

ANY QUESTION?

