
CDN - An R Package for
Cumulative Distribution Networks

MAZO, Gildas et PHAM, Van Trung
Inria Grenoble Rhône-Alpes

Laboratoire Jean Kuntzmann (LJK)

Cumulative Distribution Networks (CDN’s)

What is a CDN?
• A distribution function (df) which is a product of bivariate df’s.
• A graph encoding dependencies between variables.

How to do inference?
• To compute the likelihood is not possible by hand.
• A message passing algorithm (MPA) [1] exists to do that.
• Implementation is complicated: may prevent users from using CDN’s.

Our work: implement MPA to render inference easier.
Example.
Let x1, x2, x3 be some random variables of interest and θ the unknown parameter vector.
The CDN writes as

F(x1, x2, x3, θ) = Φ1(x1, x2, θ)Φ2(x2, x3, θ),

where Φ1 and Φ2 are bivariate df’s. The MPA aims to compute:
∂3F

∂x1∂x2∂x3
(x1, x2, x3, θ) (likelihood)

Oθ
∂3F

∂x1∂x2∂x3
(x1, x2, x3, θ) (likelihood gradient).

The tree corresponding to this CDN is represented figure 1.

Figure 1: An example of a three variables CDN

Package description

The user specifies
• the edges between the variables in the graph,
• the family of the bivariate df’s (the Φ’s) by

• specifying himself a handmade df, or
• choosing a pre-existing model (e.g. Gaussian, Gumbel, ...) (much faster).

The package provides tools to
• differentiate symbolically the bivariate df’s given by the user (if any) and store them

in a file ,
• create a CDN object containing the inputs needed by MPA consisting (among

others) in
• the tree adjacent matrix,
• the bivariate functions and their derivatives;

• implement and launch in C++ the MPA algorithm to compute the CDN
likelihood and the gradient,

• get the results back in R.
Dependencies: packages "igraph" and "Rcpp".

Figure 2: CDN package description.

An example

• 104 monthly sea level measurements at 19 sites in Japan from 2001 to 2011 are
analysed.

• Tree graph based on geographic proximity is set up.
• Bivariate Gumbel logistic distributions are chosen.

• Parameters are estimated.

Figure 3: The 19 sites in Japan and the chosen tree.

R code
> # The tree is built:
> g <- graph.formula(X1-X4, X2-X3, X3-X5, X5-X6, X6-X7, X7-X8, X8-X9,
X9-X12, X12-X14, X12-X10, X10-X11, X11-X13, X10-X4, X14-X16, X16-X15,
X16-X17, X17-X18, X18-X19, simplify = FALSE)
> # The user provides a handmade bivariate df family:
> f<-expression(exp(−(x∧ (−1/theta) + y∧ (−1/theta))∧ (theta)))

> # Or chooses a pre-existing model:
> model <- "Gumbel"
> # A CDN object is created:
> CDN <- cdn(g, root="X1", distribution = f)
> CDN <- cdn(g, root="X1", model = "Gumbel")
> # The tree can be plotted
> cdnPlot(CDN)
> # Density (likelihood) and gradient can be computed:
> CDNout <- cdnCompute(CDN, x = rexp(19),theta = runif(18), ...)
> CDNout$density # density
> CDNout$gradient # gradient
> # The likelihood can be maximized:
> MLfit1 <- optim(par, fn = function(theta){cdnCompute(theta,...)$density},
gr = function(theta){cdnCompute(theta,...)$gradient})
> MLfit2 <- cdnTraining(CDN, data)

Running time

Density (likelihood) and gradient computation on a Intel(R) Core i7 CPU 1.9GHz 4GB
RAM computer:

• 1.2s using a pre-existing model,
• 23.0s taking a handmade Φ expression from the user,
• 26.4s without using C++ and using a pre-existing model.
=⇒ suggests the user to utilize pre-existing models.

Discussion and future work

• CDN inference was difficult because MPA implementation is complicated and
no code was available.

• MPA has been implemented and CDN inference is easier.
• One now can fit CDN’s to data.
• Copula models will be implemented in a future work.

References
[1] Huang, J.C. and Jojic, N. (2010). Maximum-likelihood learning of cumulative distribution functions

on graphs. 13th International Conference on Artificial Intelligence and Statistics, AISTATS.

R Rencontre Lyon

