
Hadley Wickham
@hadleywickham
Chief Scientist, RStudio

Visualising big
data (in R)

June 2013

Friday, July 26, 13

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/

Motivation

Friday, July 26, 13

Studio

Data

• Every US commercial domestic flight
2000-2011: ~76 million flights

• >100 variables. I’ll focus on 4: delay,
distance, flight time and speed.

• (Total database: ~11 Gb)

Friday, July 26, 13

Studio

library(ggplot2)
library(bigvis)

Can't use data frames :(
dist <- readRDS("dist.rds")
delay <- readRDS("delay.rds")
time <- readRDS("time.rds")
speed <- dist / time * 60

There's always bad data
time[time < 0] <- NA
speed[speed < 0] <- NA
speed[speed > 761.2] <- NA

Friday, July 26, 13

qplot(dist, speed, colour = delay) +
 scale_colour_gradient2()
Friday, July 26, 13

qplot(dist, speed, colour = delay) +
 scale_colour_gradient2()

One hour later...

Friday, July 26, 13

x <- runif(2e5)
y <- runif(2e5)
system.time(plot(x, y))
Friday, July 26, 13

Friday, July 26, 13

 user system elapsed
2.785 0.010 2.806

Friday, July 26, 13

Studio

Motivating principles

• Support exploratory analysis (e.g. in R)

• Efficient

• 1d: 3,000; 2d: 3,000,000

• Fast on commodity hardware

• 100,000,000 in <5s

• 108 obs = 0.8 Gb, ~20 vars in 16 Gb

Friday, July 26, 13

Studio

Process

• Condense (bin & summarise)

• Smooth

• Visualise

Friday, July 26, 13

Studio

Related work
• W. Härdle and D. Scott. Smoothing in low and

high dimensions by weighted averaging using
rounded points. Computational Statistics, 7:97–
128, 1992.

• J. Fan and J. S. Marron. Fast implementations
of nonparametric curve estimators. Journal of
Computational and Graphical Statistics, 3 (1):
35–56, 1994.

• M. Wand. Fast computation of multivariate
kernel estimators. Journal of Computational
and Graphical Statistics, 3 (4):433–445, 1994.

Friday, July 26, 13

Condense

Friday, July 26, 13

�
x� origin

width

⌫Bin

Friday, July 26, 13

Studio

Fixed bins

• V. fast to compute.

• Not obviously worse for density
estimation

• No automatic bin width estimation: err
on the side of too many & fix up later

Friday, July 26, 13

Count

Mean

Std. dev.

Quantiles

Histogram, KDE

Regression, Loess

Boxplots, Quantile regression
smoothing

Summarise

Friday, July 26, 13

Studio

0

500000

1000000

1500000

0 1000 2000 3000 4000 5000
dist

.c
ou
nt

dist_s <- condense(bin(dist, 10))
autoplot(dist_s)
Friday, July 26, 13

Studio

0

500000

1000000

1500000

0 1000 2000 3000 4000 5000
dist

.c
ou
nt

dist_s <- condense(bin(dist, 10))
autoplot(dist_s)

 user system elapsed
2.642 0.972 3.613

Friday, July 26, 13

Studio

NA

0

500000

1000000

1500000

0 1000 2000 3000
time

.c
ou
nt

time_s <- condense(bin(time, 1))
autoplot(time_s)
Friday, July 26, 13

Studio

0

250000

500000

750000

0 250 500 750 1000
time

.c
ou
nt

autoplot(time_s, na.rm = TRUE)
Friday, July 26, 13

Studio

0

250000

500000

750000

0 100 200 300 400 500
time

.c
ou
nt

autoplot(time_s[time_s < 500,])
Friday, July 26, 13

Studio

0

500000

1000000

1500000

0 20 40 60
time

.c
ou
nt

autoplot(time_s %% 60)
Friday, July 26, 13

●

●

●
●

●

●●

●●
●

●

●

●

●●●

●●●
●
●

●●
●
●●
●

●
●

●●●
●●●
●●●
●●
●●
●●
●●●
●●
●●

●●●
●●●●●●
●●
●●
●●●
●
●
●●●●●●
●●
●●●●
●●●●●●●
●●●●●●●●

●
●●●●●
●●

●●●●●●
●●●●●
●●
●●●●●
●●
●●
●●
●●●●

●

●●●●●
●

●
●●
●●●
●●
●●●●
●●●●●
●●
●●
●
●
●

●●●
●●
●●
●●●
●
●●●●●●
●●●
●
●●●●
●●●●

●

●
●●
●●●
●

●●
●
●
●
●

●●
●
●●
●●●
●●●●●●●

●

●

●

●

●
●●
●

●●●
●

●
●

●

●

●●●
●
●

●

●

●

●

●
●

●●

●

●●

●

●

●

●

●
●

●●
●

●

●●●

●

●●●
●●

●

●●●●
●
●
●

●
●●●
●
●●

●●
●
● ●●

●●
●

●

●
●

●
●

●
●

200

400

600

0 1000 2000 3000 4000 5000
dist

sp
ee
d

1e+00

1e+02

1e+04

1e+06
.count

Friday, July 26, 13

●

●

●
●

●

●●

●●
●

●

●

●

●●●

●●●
●
●

●●
●
●●
●

●
●

●●●
●●●
●●●
●●
●●
●●
●●●
●●
●●

●●●
●●●●●●
●●
●●
●●●
●
●
●●●●●●
●●
●●●●
●●●●●●●
●●●●●●●●

●
●●●●●
●●

●●●●●●
●●●●●
●●
●●●●●
●●
●●
●●
●●●●

●

●●●●●
●

●
●●
●●●
●●
●●●●
●●●●●
●●
●●
●
●
●

●●●
●●
●●
●●●
●
●●●●●●
●●●
●
●●●●
●●●●

●

●
●●
●●●
●

●●
●
●
●
●

●●
●
●●
●●●
●●●●●●●

●

●

●

●

●
●●
●

●●●
●

●
●

●

●

●●●
●
●

●

●

●

●

●
●

●●

●

●●

●

●

●

●

●
●

●●
●

●

●●●

●

●●●
●●

●

●●●●
●
●
●

●
●●●
●
●●

●●
●
● ●●

●●
●

●

●
●

●
●

●
●

200

400

600

0 1000 2000 3000 4000 5000
dist

sp
ee
d

1e+00

1e+02

1e+04

1e+06
.count

sd1 <- condense(bin(dist, 10), z = speed)
autoplot(sd1) + ylab("speed")
Friday, July 26, 13

●

●

●
●

●

●●

●●
●

●

●

●

●●●

●●●
●
●

●●
●
●●
●

●
●

●●●
●●●
●●●
●●
●●
●●
●●●
●●
●●

●●●
●●●●●●
●●
●●
●●●
●
●
●●●●●●
●●
●●●●
●●●●●●●
●●●●●●●●

●
●●●●●
●●

●●●●●●
●●●●●
●●
●●●●●
●●
●●
●●
●●●●

●

●●●●●
●

●
●●
●●●
●●
●●●●
●●●●●
●●
●●
●
●
●

●●●
●●
●●
●●●
●
●●●●●●
●●●
●
●●●●
●●●●

●

●
●●
●●●
●

●●
●
●
●
●

●●
●
●●
●●●
●●●●●●●

●

●

●

●

●
●●
●

●●●
●

●
●

●

●

●●●
●
●

●

●

●

●

●
●

●●

●

●●

●

●

●

●

●
●

●●
●

●

●●●

●

●●●
●●

●

●●●●
●
●
●

●
●●●
●
●●

●●
●
● ●●

●●
●

●

●
●

●
●

●
●

200

400

600

0 1000 2000 3000 4000 5000
dist

sp
ee
d

1e+00

1e+02

1e+04

1e+06
.count

sd1 <- condense(bin(dist, 10), z = speed)
autoplot(sd1) + ylab("speed")

 user system elapsed
 2.568 0.767 3.339

Friday, July 26, 13

Studio

Distributive 1 value

Algebraic m values

Holistic f(n) values

Advantage of algebraic & distributive is that
they can be re-aggregated which makes
them trivially parallelisable & re-binnable

Friday, July 26, 13

Studio

Distributive sum, count,
min, max

Algebraic mean, sd

Holistic quantile,
cardinality

Advantage of algebraic & distributive is that
they can be re-aggregated which makes
them trivially parallelisable & re-binnable

Friday, July 26, 13

0

200

400

600

800

0 1000 2000 3000 4000 5000
dist

sp
ee
d

0e+00
1e+05
2e+05
3e+05
4e+05
5e+05
6e+05

.count

Friday, July 26, 13

0

200

400

600

800

0 1000 2000 3000 4000 5000
dist

sp
ee
d

0e+00
1e+05
2e+05
3e+05
4e+05
5e+05
6e+05

.count

sd2 <- condense(bin(dist, 20), bin(speed, 20))
autoplot(sd2)
Friday, July 26, 13

0

200

400

600

800

0 1000 2000 3000 4000 5000
dist

sp
ee
d

0e+00
1e+05
2e+05
3e+05
4e+05
5e+05
6e+05

.count

sd2 <- condense(bin(dist, 20), bin(speed, 20))
autoplot(sd2)

 user system elapsed
 7.366 1.190 8.552

Friday, July 26, 13

Smooth

Friday, July 26, 13

Studio

Why smooth?

• Fix over binning

• Dampen effect of outliers

• Focus on main trends

Friday, July 26, 13

0

500000

1000000

1500000

0 1000 2000 3000 4000 5000
dist

.c
ou
nt

dist_s <- condense(bin(dist, 10))
autoplot(dist_s)
Friday, July 26, 13

Studio

Demo
shiny::runApp("smooth/", 8000)

Friday, July 26, 13

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−1.0

−0.5

0.0

0.5

1.0

0 1 2 3

Binned
Friday, July 26, 13

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−1.0

−0.5

0.0

0.5

1.0

0 1 2 3

Running
Friday, July 26, 13

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−1.0

−0.5

0.0

0.5

1.0

0 1 2 3

Kernel mean
K(x) =

�
1� |x|3

�2
I|x|<1

Friday, July 26, 13

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−1.0

−0.5

0.0

0.5

1.0

0 1 2 3

Kernel regression
Friday, July 26, 13

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−1.0

−0.5

0.0

0.5

1.0

0 1 2 3

Kernel robust regression
Friday, July 26, 13

Studio

Locally constant
(Nadaraya-Watson,

kernel mean)

Convolution
(=fast)

Locally linear
(Kernel regression/

smooth)

Better boundary
behaviour

Locally linear
(robust)

(loess)

Better resistance
to outliers

Friday, July 26, 13

Studio

Locally constant
(Nadaraya-Watson,

kernel mean)

Convolution
(=fast)

Locally linear
(Kernel regression/

smooth)

Better boundary
behaviour

Locally linear
(robust)

(loess)

Better resistance
to outliers

Friday, July 26, 13

Studio

Locally constant
(Nadaraya-Watson,

kernel mean)

Convolution
(=fast)

Locally linear
(Kernel regression/

smooth)

Better boundary
behaviour

Locally linear
(robust)

(loess)

Better resistance
to outliers

Friday, July 26, 13

Studio

“Best” bandwidth?

• Estimate using leave-one out cross-
validation of rmse

• Not “optimal” for visualisation, but a
good place to start.

• Possible to compute in one pass for
locally constant smooths. (May be
possible for others with enough
thought)

Friday, July 26, 13

Visualise

Friday, July 26, 13

Studio

Challenges

• Prepare for outliers

• Always display count

• Always display missing values

Friday, July 26, 13

Studio

Demo
shiny::runApp("mt/", 8002)

Friday, July 26, 13

Rcpp
Dirk Eddelbuettel, Romain Francois,

& JJ Allaire

Friday, July 26, 13

Studio

library(Rcpp)
cppFunction('int one() {
 return 1;
}')
one()

Friday, July 26, 13

Studio

#include <Rcpp.h>
using namespace Rcpp;

// [[Rcpp::export]]
int one() {
 return 1;
}

Generate C++ file

Friday, July 26, 13

Studio

#include <Rcpp.h>

RcppExport SEXP sourceCpp_86581_one() {
BEGIN_RCPP
 Rcpp::RNGScope __rngScope;
 int __result = one();
 return Rcpp::wrap(__result);
END_RCPP
}

Expose C++ to C

Converts C++
object to R object

Friday, July 26, 13

Studio

/Library/Frameworks/R.framework/Resources/bin/R CMD SHLIB -o
'sourceCpp_36763.so' 'file5907496612f3.cpp'
clang++ -I/Library/Frameworks/R.framework/Resources/include -
I/Library/Frameworks/R.framework/Resources/include/x86_64 -
DNDEBUG -I/usr/local/include -I"/Users/hadley/R/Rcpp/
include" -fPIC -g -O2 -c file5907496612f3.cpp -o
file5907496612f3.o
g++ -arch x86_64 -dynamiclib -Wl,-headerpad_max_install_names
-undefined dynamic_lookup -single_module -multiply_defined
suppress -L/usr/local/lib -o sourceCpp_36763.so
file5907496612f3.o /Users/hadley/R/Rcpp/lib/x86_64/libRcpp.a -
F/Library/Frameworks/R.framework/.. -framework R -Wl,-
framework -Wl,CoreFoundation

Compile C & C++ code to a DLL

Friday, July 26, 13

Studio

`.sourceCpp_86581_DLLInfo` <-
dyn.load('/tmp/Rtmpt0ZCNp/
sourcecpp_2cf047b27139/
sourceCpp_91998.so')

Dynamically link DLL

Friday, July 26, 13

Studio

one <-
Rcpp:::sourceCppFunction(function() {},
FALSE, `.sourceCpp_86581_DLLInfo`,
'sourceCpp_86581_one')

rm(`.sourceCpp_86581_DLLInfo`)

Connect to C function in DLL to R

Friday, July 26, 13

Studio

cppFunction("int one() {
 return 1;
}")
cppFunction("int one() {
 return 1;
}")
Doesn't need to recompile!
one()

Friday, July 26, 13

Studio

Why C++?

• Modern, high-performance language

• Precise control over memory allocation
and copying.

• Excellent built-in libraries (e.g. STL)

• With Rcpp, much easier than C/Fortran

• Not too hard to learn

Friday, July 26, 13

Studio

Google for:
“Rcpp”

“Rcpp gallery”
“Rcpp hadley”

Friday, July 26, 13

Shiny
Joe Chen & Winston Chang

Friday, July 26, 13

Studio

library(shiny)
runApp("smooth/")

Friday, July 26, 13

Studio

shinyUI(pageWithSidebar(
 headerPanel("Smoothing"),
 sidebarPanel(sliderInput(inputId = "h",
 label = "Bandwidth (in multiples of binwidth):",
 min = 1, max = 20, value = 1, step = 0.1)),
 mainPanel(plotOutput(
 outputId = "plot", height = "300px"))
))

ui.r

Friday, July 26, 13

Studio

library(bigvis)
library(ggplot2)
library(plyr)

dist <- readRDS("dist.rds")
dist_s <- condense(bin(dist, 10))

shinyServer(function(input, output) {
 output$plot <- renderPlot({
 n <- as.numeric(input$h)
 if (n <= 1) {
 print(autoplot(dist_s))
 } else {
 print(autoplot(smooth(dist_s, n * 10)))
 }
 })
})

server.r

Friday, July 26, 13

Studio

Why shiny?

• Create web apps easily with knowing
html, js, css, ...

• You describe connections between UI
and data & shiny takes care of
managing the updates

• (Eventually) easily deploy locally or in
the cloud

Friday, July 26, 13

Studio

Google for:
“shiny”

“shiny mailing list”
“shiny tutorial”

Friday, July 26, 13

Conclusions

Friday, July 26, 13

Studio

Performance

• “Interactive” exploration of 100,000,000
observations is possible in R

• Key is use of C++ and extreme care
with memory allocation/copying

• RCpp makes this v. easy

Friday, July 26, 13

Studio

Future work

• Multi-core + out-of-memory

• In database, where possible

• More summary statistics

Friday, July 26, 13

Google for:
“bigvis”

Friday, July 26, 13

